lncRNA maturation to initiate heterochromatin formation in the nucleolus is required for exit from pluripotency in ESCs.

نویسندگان

  • Nataša Savić
  • Dominik Bär
  • Sergio Leone
  • Sandra C Frommel
  • Fabienne A Weber
  • Eva Vollenweider
  • Elena Ferrari
  • Urs Ziegler
  • Andres Kaech
  • Olga Shakhova
  • Paolo Cinelli
  • Raffaella Santoro
چکیده

The open chromatin of embryonic stem cells (ESCs) condenses into repressive heterochromatin as cells exit the pluripotent state. How the 3D genome organization is orchestrated and implicated in pluripotency and lineage specification is not understood. Here, we find that maturation of the long noncoding RNA (lncRNA) pRNA is required for establishment of heterochromatin at ribosomal RNA genes, the genetic component of nucleoli, and this process is inactivated in pluripotent ESCs. By using mature pRNA to tether heterochromatin at nucleoli of ESCs, we find that localized heterochromatin condensation of ribosomal RNA genes initiates establishment of highly condensed chromatin structures outside of the nucleolus. Moreover, we reveal that formation of such highly condensed, transcriptionally repressed heterochromatin promotes transcriptional activation of differentiation genes and loss of pluripotency. Our findings unravel the nucleolus as an active regulator of chromatin plasticity and pluripotency and challenge current views on heterochromatin regulation and function in ESCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jun‐Mediated Changes in Cell Adhesion Contribute to Mouse Embryonic Stem Cell Exit from Ground State Pluripotency

Embryonic stem cells (ESC) are able to give rise to any somatic cell type. A lot is known about how ESC pluripotency is maintained, but comparatively less is known about how differentiation is promoted. Cell fate decisions are regulated by interactions between signaling and transcriptional networks. Recent studies have shown that the overexpression or downregulation of the transcription factor ...

متن کامل

Ctbp2-mediated β-catenin regulation is required for exit from pluripotency

The canonical Wnt pathway is critical for embryonic stem cell (ESC) pluripotency and aberrant control of β-catenin leads to failure of exit from pluripotency and lineage commitments. Hence, maintaining the appropriate level of β-catenin is important for the decision to commit to the appropriate lineage. However, how β-catenin links to core transcription factors in ESCs remains elusive. C-termin...

متن کامل

Otx2 and Oct4 Drive Early Enhancer Activation during Embryonic Stem Cell Transition from Naive Pluripotency

Embryonic stem cells (ESCs) are unique in that they have the capacity to differentiate into all of the cell types in the body. We know a lot about the complex transcriptional control circuits that maintain the naive pluripotent state under self-renewing conditions but comparatively less about how cells exit from this state in response to differentiation stimuli. Here, we examined the role of Ot...

متن کامل

Fas-Activated Mitochondrial Apoptosis Culls Stalled Embryonic Stem Cells to Promote Differentiation

The intrinsic (mitochondrial) apoptotic pathway is a conserved cell death program crucial for eliminating superfluous, damaged, or incorrectly specified cells, and the multi-domain pro-death BCL-2 family proteins BAX and BAK are required for its activation. In response to internal damage or developmental signals, BAX and/or BAK permeabilize the mitochondrial outer membrane, resulting in cytochr...

متن کامل

A lncRNA fine tunes the dynamics of a cell state transition involving Lin28, let-7 and de novo DNA methylation

Execution of pluripotency requires progression from the naïve status represented by mouse embryonic stem cells (ESCs) to a state capacitated for lineage specification. This transition is coordinated at multiple levels. Non-coding RNAs may contribute to this regulatory orchestra. We identified a rodent-specific long non-coding RNA (lncRNA) linc1281, hereafter Ephemeron (Eprn), that modulates the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell stem cell

دوره 15 6  شماره 

صفحات  -

تاریخ انتشار 2014